

排斥抛物势中相互作用时空调控的超冷玻色气体 孤子的反射、局域、穿越与振荡行为操控

何章明,朱钱泉*,潘湘 湖南工业大学理学院,湖南株洲 412007

摘要 考虑原子间相互作用随时间变化,首先基于Darboux变换法,得到一维无量纲的非线性薛定谔方程的孤子解,发现 排斥抛物势中超冷原子之间随时间呈指数增加(减小)的相互作用对孤子有一个阻力(推力)作用。然后,利用直接数值 模拟的方法研究了排斥抛物势中相互作用时空调控的超冷玻色气体孤子动力学行为,发现:当原子间相互作用不变时, 存在一个临界速率;当原子间相互作用随空间坐标变化时,不但孤子的临界局域速率会变小,而且即使初始速率为0,孤 子也可穿过势垒,并产生一个周期性振荡行为,振荡周期可通过改变囚禁频率和原子间相互作用来调控。相关结果可为 超冷玻色气体在量子信息方面的应用提供一定的参考。

关键词 量子光学;超冷玻色气体;亮孤子;原子间相互作用 中图分类号 O469 文献标志码 A

十图分尖ち 0409 又厭体志码 A

1 引 言

相互作用时空调控的超冷玻色气体的实验实现, 不仅极大地拓宽了超冷原子物理的研究范围,也为研 究新奇量子现象提供了理想平台,研究超冷玻色气体 奇异物性和新奇量子态及其量子调控已成为当前玻 色-爱因斯坦凝聚体(BEC)领域的热点之一^[1-12]。大量 的研究证实凝聚体中亮孤子在原子激光^[12]和原子干涉 仪^[13-17]等方面有潜在的应用价值,例如:稳定传播的亮 孤子可用来实现原子激光^[18];BEC中孤子的融合和分 裂可应用于 Sagnac 干涉仪^[15];亮孤子通过 Rosen-Morse 势垒的碰撞分裂现象可用来实现干涉仪^[17]。此 外,通过调节双组分 BEC 中原子间相互作用,可控制 亮-亮孤子的分裂和碰撞融合行为,并产生贝尔态,因 此 BEC 在量子信息方面也具有潜在的应用价值^[19]。

BEC的物性可通过外部囚禁势阱和原子间相互作用来调控^[20-23]。实验中,人们发展了多种方法来调 节凝聚体中原子间相互作用随时间或者空间坐标的变 化,例如光学Feshbach共振技术、磁-光Feshbach共振 技术等。然而,利用这些技术只能调节原子间相互作 用在很小的范围内变化,并且在这个过程中BEC因丢 失原子而不稳定。在近年来的实验中,基于磁 Feshbach共振技术结合空间梯度磁场,可调节BEC中 原子间相互作用随空间坐标的变化,并导致凝聚体中

DOI: 10.3788/AOS230783

的原子在空间中分布不均,从而形成长时间存在的相 互作用时空调控的凝聚体[24]。同时,在实验中观察到 亮孤子的形成,相互作用时空调控的BEC的动力学行 为也被首次研究^[24]。理论上,通过一类变换法,张解放 课题组得到了谐振势中相互作用时空调控的BEC的 孤子解析解,发现孤子数量与化学势和谐振势的能级 有关^[25]。利用相似变换,王灯山课题组研究了一维和 二维相互作用时空调控的BEC,发现在其中都存在稳 定的局域非线性物质波[26-27]。当相互作用时空调控的 BEC 中原子间相互作用增加到一定值时,光晶格中的 离散亮孤子在晶格中可保持稳定[28];当相互作用时空 调控的BEC中原子间相互作用呈高斯分布时,在雪茄 型凝聚体中也可形成法拉第波^[29]。Sudharsan等^[30]发 现化学势超过临界值时,在二维相互作用时空调控的 BEC中可形成稳定涡旋。大量的理论研究工作已经 证明可以获得相互作用时空调控的 BEC 中孤子等非 线性结构的解析解,但很少涉及其动力学行为。基于 此,本文通过数值模拟来研究相互作用时空调控的凝 聚体中亮孤子的动力学行为。结果发现,当原子间相 互作用不变时,存在一个临界速率:如果孤子的初速率 大于临界速率,孤子可以穿过排斥势垒;如果孤子的初 速率小于临界速率,孤子运动到势垒中心时会被势垒 反射回来;如果孤子的初速率等于临界速率,孤子运动 到势垒中心后形成一个局域态。当原子间相互作用随

收稿日期: 2023-04-06; 修回日期: 2023-04-17; 录用日期: 2023-05-19; 网络首发日期: 2023-06-01

基金项目:国家自然科学基金(11975094,12005057)

通信作者: *qianquanzhu@126.com

时间呈指数增加时,可以实现孤子运动的局域-反射和 穿越-反射转变;当原子间相互作用随时间呈指数减小 时,可以实现孤子运动的局域-穿越和反射-穿越转变。 此外,当原子间相互作用随空间坐标变化时,不但孤子 的临界局域速度会变小,而且即使初速度为0,孤子也 可穿过势垒,并产生一个周期性振荡。

2 模 型

考虑相互作用时空调控的凝聚体囚禁于排斥抛物 势阱中,其性质可用无量纲的非线性薛定谔方程来描述,即

$$i\phi_t = -\phi_{xx} + 2g(x,t) |\phi|^2 \phi - \frac{\omega^2}{2} x^2 \phi,$$
 (1)

式中: ω 为常数;非线性系数 $g(x,t) = 2Na_s(x,t)/a_{\perp}$, 其中N表示凝聚体中的原子数量, a_s 为S波的散射长 度,凝聚体振动长度 $a_{\perp} = \sqrt{\hbar/(M\omega_{\perp})}$,M为BEC中原 子的质量, ω_{\perp} 为谐振势阱的横向囚禁频率, \hbar 为约化普 朗克常量。无量纲参量选取为 $X = a_{\perp}x$ 、 $T = 2t/\omega_{\perp}$ 。 基于BEC的实验,凝聚体中原子数量N选为5000,同

第 43 卷 第 13 期/2023 年 7 月/光学学报

时考虑横向囚禁频率 ω_{\perp} 为100 π Hz。

3 达布变换和孤子解

为研究原子间相互作用变化对 BEC 中孤子动力 学性质的影响,首先选取 $a_s = -10.1 \exp(4At) a_B(a_B)$ 为玻尔半径, A 为常数), 然后基于达布变换精确求解 式(1), 构造如下 Lax 对:

$$\begin{cases} \boldsymbol{\Phi}_{x} = U\boldsymbol{\Phi} = \lambda J\boldsymbol{\Phi} + P\boldsymbol{\Phi} \\ \boldsymbol{\Phi}_{i} = V\boldsymbol{\Phi} = \sum_{j=0}^{n} V_{j} \lambda^{n-j} \boldsymbol{\Phi} , \qquad (2) \\ \begin{cases} \boldsymbol{\Phi} = \begin{pmatrix} \phi_{1} \\ \phi_{2} \end{pmatrix} \\ J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ J = \begin{pmatrix} 0 & p \\ q & 0 \end{pmatrix} , \qquad (3) \\ V = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} - v_{11} \end{pmatrix} \end{cases}$$

Lax 对的可积条件为 $U_t - V_r + [U, V] = 0$,因此取

$$\begin{cases} p = \psi \exp \left[2At + iA(t)x^{2} + iB(t)x + iC(t) \right] \\ q = -\bar{\psi} \exp \left[2At + -iA(t)x^{2} - iB(t)x - iC(t) \right] \\ v_{11} = 2i\lambda^{2} + i\exp(4At) |\psi|^{2} + \left[4Ax + 2\exp(4At) \right] \lambda \\ v_{12} = \exp(2At) \left\{ 2i\psi\bar{Q}\lambda + i\psi_{x}\bar{Q} + \left[2Ax + \exp(4At) \right] \psi\bar{Q} \right\} \\ v_{21} = \exp(2At) \left\{ -2i\bar{\psi}Q\lambda - i\bar{\psi}_{x}Q - \left[2Ax + \exp(4At) \right] \bar{\psi}Q \right\} \end{cases}$$
(4)

式中: $A = \pm \omega/2$; $Q = \exp[-iAx^2 - i\exp(4At)x - i\exp(8At)/(8A)]$; $B(t) = \exp(4At)$; $C(t) = \exp(8At)/(8A)$ 。为了求解式(2),选取式(1)的一个初 始平面波解

$$\psi_0 = Q \exp\left[2At + i\frac{\exp(8At)}{4A}\right], \quad (5)$$

将得到的Lax对的解代入一次达布变换式

$$\psi = \psi_0 \left[1 + 2 \left(\lambda_{01} + \bar{\lambda}_{01} \right) \frac{z}{1 + |z|^2} \right], \quad (6)$$

即可得到式(1)的新解

$$\varphi = \\ \varphi_0 \left[-1 + 2 \frac{(\lambda_{01}^2 - 1)\cos\varphi + i\lambda_{01}\sqrt{\lambda_{01}^2 - 1}\sin\varphi}{\lambda_{01}^2\cosh\theta + \lambda_{01}\sqrt{\lambda_{01}^2 - 1}\sinh\theta - \cos\varphi} \right],$$
(7)

式中: λ_{01} 为谱参数; $z = \phi_1 \times \exp\left[-i\exp(8At)/(4A)\right]/\phi_2; \theta = 2\sqrt{\lambda_{\alpha}^2 - 1}\exp(4At) \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]; \qquad \varphi = \lambda_{01}\sqrt{\lambda_{\alpha}^2 - 1} \times \left[x + \exp(4At)/(4A)\right]$

 $\exp\left(\frac{8At}{2A}\right)$

根据式(7)得到凝聚体初始时刻的密度分布,如 图1所示。从图1(a)看到,当原子间相互作用随时间 呈指数增加时,一个亮孤子出现在 $x \approx -12.9 \pm 3$;当 原子间相互作用随时间呈指数减小时,如图1(b)所 示,亮孤子出现在x ≈ 12.1处。两种情况下,两个孤 子的幅度和宽度相同,相应的运动轨迹如图2所示。 从图2看到,当原子间相互作用随时间呈指数增加 (A = 0.02)时, 亮孤子从 $x \approx -12.9$ 处向x 轴负方向 匀速运动,此时孤子受到势垒的排斥推力F1,F1的方 向沿着x轴负方向,表明随时间呈指数增加的原子间 相互作用对孤子运动产生一个阻力F₂, F₂的方向沿着 x轴正方向。在孤子运动过程中, $|F_1| = |F_2|$,使得孤 子保持匀速运动。当原子间相互作用随时间呈指数减 $\Lambda(A = -0.02)$ 时,孤子从 $x \approx 12.1$ 处向势垒中心位 置匀速运动,此时孤子受到的势垒排斥力F₁的方向沿 着x轴正方向,因此随时间呈指数减小的原子间相互 作用对孤子运动产生一个推力 F_3 , F_3 的方向沿着x轴 负方向。在孤子运动过程中,|F1|=|F3|,因此孤子也 保持匀速运动。

图 1 初始时刻凝聚体密度分布($\lambda_{01} = 2.0$)。(a)原子间相互作用随时间呈指数增加(A = 0.02);(b)原子间相互作用随时间呈指数 减小(A = -0.02)

图 2 $\lambda_{01} = 2.0$ 时亮孤子的运动轨迹 Fig. 2 Trajectories of bright soliton at $\lambda_{01} = 2.0$

4 孤子反射、局域与隧穿

考虑原子间相互作用随空间坐标 x 变化后,式(1) 无法解析求解,因此基于 Crank-Nicolson 方法来对排 斥抛物势中相互作用时空调控的 BEC 的孤子动力学 行为进行数值研究。式(1)的初始条件选为

 $\psi(x,0) = \exp(-ivx) \operatorname{sech}(x-x_0),$ (8) 式中:v为初始速率;x₀为初始位置。为了对比,首先考 虑原子间相互作用不变,选取g=-2.0。当孤子的 初始速率v=0.42400时,其动力学行为如图3所示。 从图3可发现:BEC中的孤子朝x轴正方向运动,在 t≈22时到达势垒的中心位置;随着时间的继续推移, 孤子整体向x轴负方向运动。这表明孤子被势垒反射 回来了,并且孤子没有发生分裂。接下来,设初始速率 v=0.42500,其他参数不变,相应的孤子动力学行为 如图4所示。从图4看到,在t≈20时孤子到达势垒的 中心位置,随着时间的继续推移,孤子穿过势垒中心, 继续向x轴正方向运动,期间孤子也没有发生分裂,表 明孤子在这个初始速率下可穿过排斥势垒。

图 3 和图 4 所示结果也表明: 孤子的初始速率存在

图 3 v=0.42400、g=-2.0、x₀=-12.0、ω=0.1时原子间 相互作用不变的凝聚体中的孤子反射行为

一个临界值。当初始速率比临界值小时,孤子就会被 势垒反射回去;当初始速率比临界值大时,孤子可穿过 势垒。为了找到这个临界速率,继续改变孤子的初始 速率,发现当孤子的初始速率v=0.42474时,如图 5 所示,孤子运动到势垒中心位置后产生一个局域行为。 这是因为孤子在排斥抛物势垒的作用下作减速运动, 当运动到势阱中心后速度为0,而在势垒中心位置受 到势垒的作用力也为 $0(|F_1|=0)$,所以孤子产生局域 行为。随着时间的继续推移,局域孤子的宽度和幅度 不变,孤子保持稳定。为了研究囚禁势对孤子局域行 为的影响,计算了不同囚禁频率下的孤子局域行为,相 应的孤子临界局域速率随囚禁频率的增加,孤子的临 界局域速率呈线性增加。

为了研究随时间变化的原子间相互作用对孤子局域、反射和穿越行为的影响,考虑 $a_s = -10.1 \exp(\lambda t) a_B, 其中\lambda为常数。选取孤子的初始速$

图 4 v=0.42500、g=-2.0、x₀=-12.0、ω=0.1时原子间 相互作用不变的凝聚体中的孤子穿越行为

Fig. 4 Transmission behavior of solitons in condensates with unchanged atom interaction when v = 0.42500, g = -2.0, $x_0 = -12.0$, and $\omega = 0.1$

图 5 v=0.42474、g=-2.0、x₀=-12.0、ω=0.1时原子间 相互作用不变的凝聚体中的孤子局域行为

Fig. 5 Localization behavior of solitons in condensates with unchanged atom interaction when v = 0.42474, g = -2.0, $x_0 = -12.0$, and $\omega = 0.1$

图 6 g=-2.0、x₀=-12.0时原子间相互作用不变的凝聚体 中孤子的临界局域速率随囚禁频率的变化关系

Fig. 6 Critical local speed of solitons in condensates with unchanged atom interaction varying with potential frequency when g = -2. 0 and $x_0 = -12$. 0

率等于临界局域速率 v_c = 0.42474, 不同的原子间相 互作用下孤子的运动轨迹如图 7 所示, 其中实线表示

第 43 卷 第 13 期/2023 年 7 月/光学学报

相互作用不变($\lambda = 0$), 虚线表示相互作用增加($\lambda =$ 0.01),点线表示相互作用减小(λ=-0.01)。当原子 间相互作用随时间呈指数增加(λ=0.01)时,孤子运 动到势垒中心后被反射回来,这是因为当原子间相互 作用不变时,孤子只受到势垒排斥力F1。当原子间相 互作用指数增加时,孤子除了受到势垒的排斥力外,随 时间呈指数增加的原子间相互作用对孤子也产生了一 个阻力 F_{20} , F_{1} 和 F_{2} 的方向都是沿着x轴负方向,所以 孤子受到的合力 $|F_1+F_2| > |F_1|$,从而被反射回来。 当原子间相互作用随时间呈指数减小(λ=-0.01) 时,孤子可以通过势垒,这是因为随时间呈指数减小的 原子间相互作用对孤子产生了一个推力 F_3 , F_3 的方向 是沿着x轴正方向,与势垒排斥力 F_1 的方向相反,所 以孤子受到的合力 $||F_1| - |F_3|| < |F_1|$,因此孤子可以 穿过势垒。图7所示的结果也表明:随时间呈指数变 化的原子间相互作用会破坏孤子的局域行为,并通过 调节原子间相互作用随时间呈指数增加(减小)来实现 孤子运动从局域到反射(穿越)的转变。

图 7 v_c=0.42474、x₀=-12.0、ω=0.1时不同原子间相互 作用下孤子的位置变化

Fig. 7 Change of soliton position under different atom interactions when $v_c = 0.42474$, $x_0 = -12.0$, and $\omega = 0.1$

接下来选取孤子的初速率小于临界局域速率,即 v=0.42473,不同原子间相互作用下孤子的运动轨迹 如图 8 所示。从图 8 看到:当原子间相互作用不变 $(\lambda=0)$ 时,孤子运动到势垒中心后被反射回来;当原 子间相互作用随时间呈指数减小 $(\lambda=-0.01)$ 时,孤 子穿过了势垒,这也是因为随时间呈指数减小的原子 间相互作用对孤子产生了一个推力 F_3 , F_3 的方向沿着 x轴正方向,与势垒排斥力 F_1 的方向相反,因此孤子受 到的合力 $||F_1|-|F_3|| < |F_1|$,孤子可以穿过势垒。当 选取孤子的初速率大于临界局域速率,即 v=0.42476,相应的孤子运动轨迹如图9所示。从 图 9看到:当原子间相互作用死变($\lambda=0$)时,孤子穿过 了势垒;当原子间相互作用随时间呈指数增加($\lambda=$ 0.01)时,孤子运动到势垒中心后被反射回来。图8和 图 9所示的结果表明:当原子间相互作用随时间呈指

数增加时,即使孤子的初始速率大于临界速率,也会被势垒反射回来,并可实现孤子运动从穿越到反射的转变;当原子间相互作用随时间呈指数减小时,即使孤子的初始速率小于临界速率,也可以穿过势垒,并可实现孤子运动从反射到穿越的转变。

图 8 $v = 0.42473_{x_0} = -12.0_{\omega} = 0.1$ 时凝聚体中孤子的反射-穿越转变

Fig. 8 Reflection-transmission transition of solitons in condensates when v = 0.42473, $x_0 = -12.0$, and $\omega = 0.1$

图 9 $v = 0.42476_{x_0} = -12.0_{\omega} = 0.1$ 时凝聚体中孤子的穿越-反射转变

Fig. 9 Transmission-reflection transition of solitons in condensates when v = 0.42476, $x_0 = -12.0$, and $\omega = 0.1$

为了研究相互作用时空调控的凝聚体中的孤子动 力学行为,考虑S波散射长度 $a_s = -10.1(1 - kx^2)a_B$, 其中k为常数。此时,S波散射长度绝对值 $|a_s|$ 随着坐 标|x|的增大而减小,k越大,S波散射长度绝对值 $|a_s|$ 变化越快。当孤子的初始速度率v = 0.39777时,其 动力学行为如图10所示。从图10可发现,孤子在 $t \approx$ 24时到达势阱的中心位置,然后孤子位置保持不变, 幅度呈高低变化。与图5所示的孤子局域行为相比, 图10所示的孤子局域速率变小。接下来,计算不同囚 禁频率下相互作用时空调控的凝聚体中的孤子局域行 为。相应的孤子临界局域速率随囚禁频率的变化如 图11所示。从图11可看到,孤子临界局域速率与囚禁 频率仍呈线性关系,但是与图6所示的结果相比,孤子 的局域速率变小。这是因为孤子除了受到势垒的排斥

第 43 卷 第 13 期/2023 年 7 月/光学学报

力外,原子间相互作用随空间坐标|x|的增大而变小, 而减小的原子间相互作用同样对孤子有一个推力F₄。 在初始时刻,F₄的方向沿着x轴正方向,与势垒给予的 排斥力方向相反,因此孤子受到的合力||F₁|-|F₄||< |F₁|,为克服合力产生局域行为所需的初始速率 也小。

图 10 v=0.39777、k=0.001、x₀=-12.0、ω=0.1时相互 作用时空调控凝聚体中孤子的局域行为

Fig. 10 Localization behavior of solitons in inhomogeneous condensates when v = 0.39777, k = 0.001, $x_0 = -12.0$, and $\omega = 0.1$

- 图 11 k=0.001、x₀=-12.0时相互作用时空调控凝聚体中 孤子的临界局域速率随囚禁频率的变化关系
- Fig. 11 Critical local speed of solitons in inhomogeneous condensates varying with the potential frequency when k = 0.001 and $x_0 = -12.0$

为了研究推力 F_4 对凝聚体中孤子性质的影响,选 取孤子初始速率v=0,并减小囚禁频率,选取 $\omega=$ 0.02,相应的孤子运动轨迹如图12所示。从图12可 发现,在时间t从0增加到40的过程中,即使BEC中孤 子的初始速率为0,孤子还是朝x轴正方向运动,在 $t\approx$ 40时到达势垒中心x=0处。这因为孤子受到势垒的 排斥力 $F_1(F_1$ 方向沿着x轴负方向)和沿着x轴负方向 减小的原子间相互作用对孤子的推力 $F_4(F_4$ 的方向沿 着x轴正方向),在这段时间内 $|F_4| > |F_1|$,孤子受到的 合力($||F_4| - |F_1||$)的方向指向x轴正方向,所以孤子 在这个合力的作用下沿着x轴正方向运动。随着时间

t从40增加到80,孤子穿过势垒,继续受到势垒的排斥 力 $F_1(此时F_1)$ 的方向变为沿着x轴正方向)和沿着x轴 正方向减小的原子间相互作用对孤子的推力F₄(此时 F₄方向变为沿着x轴负方向),孤子受到的推力同样大 于势垒给予的排斥力($|F_4| > |F_1|$),BEC中孤子受到 的合力($||F_4| - |F_1||$)的方向指向*x*轴负方向,因此孤 子在这个合力的影响下作减速运动。当时间 $t \approx 80$, 孤子运动到x = 12处,速率变为0。随着时间继续增 加,孤子在合力作用下(合力方向沿着x轴负方向)沿 着x轴负方向运动,在t≈120时,孤子回到势阱中心 x = 0处。在 $t \approx 160$ 时,孤子回到初始位置x = -12处,并且速率变为0。相同的现象在图12中其他相同 的时间段也能被观察到,相应孤子受到势垒的排斥力 F_1 和因原子间相互作用减小而产生的推力 F_4 的共同 作用,合力($||F_4| - |F_1||$)的方向总是指向势垒中心 x=0处,从而类似于在谐振势阱中产生一个周期性振 荡,振荡周期 $T \approx 160$ 。

为了研究原子间相互作用变化对孤子周期性振荡的影响,计算不同k值下孤子的振荡行为,相应的振荡周期随k值的变化如图13所示。从图13看到,孤子的振荡周期随着k值的增大而变小,这是因为随着k值的增大,S波散射长度绝对值 $|a_s|减小速度越快,即原子间相互作用的减小速度越快,对孤子产生的推力<math>F_4$ 也越大,即孤子受到的合力($||F_4|-|F_1||$)增大,导致孤子振荡周期减小。

图 12 $v=0,k=0.001,x_0=-12.0,\omega=0.02$ 时凝聚体中孤 子的周期性振荡行为

最后,为了研究囚禁势阱对孤子周期振荡行为的 影响,计算了不同囚禁频率下孤子的振荡行为,相应的 振荡周期随频率ω的变化如图14所示。从图14看 到,孤子的振荡周期随着频率ω的增加而增大。这是 因为随着势垒频率ω的增大,孤子受到的势垒排斥力 F₁增大,因此孤子受到的合力||F₄|-|F₁||减小,导致 孤子振荡周期增大。图13和14所示的结果也表明:可 通过调节原子间相互作用和囚禁势垒实现对孤子周期

第 43 卷 第 13 期/2023 年 7 月/光学学报

图 13 v=0,x₀=-12.0,ω=0.02时不同原子间相互作用下 孤子的振荡周期

Fig. 13 Oscillation period of solitons under different interatomic interactions when v = 0, $x_0 = -12.0$, and $\omega = 0.02$

图 14 v=0,x₀=-12.0,k=0.001 时不同势阱囚禁频率下 孤子的振荡周期

Fig. 14 Oscillation period of solitons at different potential frequencies when v = 0, $x_0 = -12.0$, and k = 0.001

性振荡的精确控制。

5 结 论

对凝聚体中孤子的穿越、反射、局域和周期性振荡 行为进行数值模拟。首先基于 Darboux 变换法,得到 一维无量纲的非线性薛定谔方程的孤子解,发现随时 间呈指数增加(减小)的原子间相互作用对孤子有一个 阻力(推力)作用。然后,利用Crank-Nicolson方法对 孤子的动力学行为进行数值模拟。当原子间相互作用 不变时,存在一个临界速率:如果孤子的初速率大于临 界速率,孤子可以穿过排斥势垒;如果孤子的初始速率 小于临界速率,孤子运动到势垒中心处时被势垒反射 回来;如果孤子的初速率等于临界速率,孤子运动到势 垒中心后形成一个局域态,并且临界局域速率随着囚 禁频率的增加而线性增大,即孤子局域行为可通过调 节外部势来控制。当原子间相互作用随时间呈指数增 加时,孤子的局域行为消失,并且即使孤子的初始速率 大于临界速率,也会被势垒反射回来,实现孤子运动的 局域-反射和穿越-反射转变;当原子间相互作用随时 间呈指数减小时,孤子的局域现象同样消失,并且即使

孤子的初始速率小于临界速率,也可以穿过势垒,实现 孤子运动的局域-穿越和反射-穿越转变。此外,当原 子间相互作用随空间坐标 | x | 的增大而减小时,不但孤 子的临界局域速度会变小,而且即使初始速率为0,孤 子也可穿过势垒,并产生一个周期性振荡行为。振荡 周期可通过改变囚禁频率和原子间相互作用来控制。 相关结果可为未来凝聚体的应用提供参考。

参考文献

- Kengne E, Liu W M, Malomed B A. Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates [J]. Physics Reports, 2021, 899: 1-62.
- [2] Kengne E, Lakhssassi A, Liu W M, et al. Phase engineering, modulational instability, and solitons of Gross-Pitaevskii-type equations in 1+1 dimensions[J]. Physical Review E, 2013, 87 (2): 022914.
- [3] Sakkaf L A, Uthayakumar T, Khawaja U A. Quantum reflection of dark solitons scattered by reflectionless potential barrier and position-dependent dispersion[J]. Physical Review E, 2022, 105(6): 064207.
- [4] Kim M, Rabga T, Lee Y, et al. Suppression of spontaneous defect formation in inhomogeneous Bose gases[J]. Physical Review A, 2022, 106(6): L061301.
- [5] Rakhimov A, Abdurakhmonov T, Narzikulov Z, et al. Selfconsistent theory of a homogeneous binary Bose mixture with strong repulsive interspecies interaction[J]. Physical Review A, 2022, 106(3): 033301.
- [6] He X G, Zhao D, Li L, et al. Engineering integrable nonautonomous nonlinear Schrödinger equations[J]. Physical Review E, 2009, 79(5): 056610.
- [7] Cheng Y S, Adhikari S K. Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice[J]. Physical Review A, 2011, 83(2): 023620.
- [8] Zhong W P, Belić M R, Malomed B A, et al. Solitary waves in the nonlinear Schrödinger equation with Hermite-Gaussian modulation of the local nonlinearity[J]. Physical Review E, 2011, 84(4): 046611.
- [9] Liu Q H, Qian D B. Construction of modulated amplitude waves via averaging in collisionally inhomogeneous Bose-Einstein condensates[J]. Journal of Nonlinear Mathematical Physics, 2012, 19(2): 255-268.
- [10] Zhang S L, Zhou Z W, Wu B A. Superfluidity and stability of a Bose-Einstein condensate with periodically modulated interatomic interaction[J]. Physical Review A, 2013, 87(1): 013633.
- [11] Yan Z Y, Konotop V V, Yulin A V, et al. Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates [J]. Physical Review E, 2012, 85(1): 016601.
- [12] 陈影,周昱,马晓栋.玻色-爱因斯坦凝聚均匀系统中集体激发的朗道阻尼[J].光学学报,2022,42(16):1627001.
 Chen Y, Zhou Y, Ma X D. Landau damping of collective excitation in Bose-Einstein condensed homogeneous system[J].
 Acta Optica Sinica, 2022, 42(16): 1627001.
- [13] Helm J L, Billam T P, Gardiner S A. Bright matter-wave soliton collisions at narrow barriers[J]. Physical Review A, 2012, 85(5): 053621.
- [14] Helm J L, Rooney S J, Weiss C, et al. Splitting bright matter-

第 43 卷 第 13 期/2023 年 7 月/光学学报

wave solitons on narrow potential barriers: quantum to classical transition and applications to interferometry[J]. Physical Review A, 2014, 89(3): 033610.

- [15] Helm J L, Cornish S L, Gardiner S A. Sagnac interferometry using bright matter-wave solitons[J]. Physical Review Letters, 2015, 114(13): 134101.
- [16] Polo J, Ahufinger V. Soliton-based matter-wave interferometer[J]. Physical Review A, 2013, 88(5): 053628.
- [17] Li S C, Fu L B, Duan W S, et al. Nonlinear Ramsey interferometry with Rosen-Zener pulses on a two-component Bose-Einstein condensate[J]. Physical Review A, 2008, 78(6): 063621.
- [18] He Z M, Wang D L, Ding J W, et al. Effect of interspecies interactions on the collision properties of bright-bright solitons in two-species Bose-Einstein condensates[J]. The European Physical Journal D, 2012, 66(5): 139.
- [19] Gertjerenken B, Billam T P, Blackley C L, et al. Generating mesoscopic bell states via collisions of distinguishable quantum bright solitons[J]. Physical Review Letters, 2013, 111(10): 100406.
- [20] 文林,梁毅,周晶,等.线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响[J].物理学报,2019,68
 (8):080301.

Wen L, Liang Y, Zhou J, et al. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates[J]. Acta Physica Sinica, 2019, 68(8): 080301.

- [21] Dong G J, Hu B, Lu W P. Ground-state properties of a Bose-Einstein condensate tuned by a far-off-resonant optical field[J]. Physical Review A, 2006, 74(6): 063601.
- [22] Dong G J, Hu B. Management of Bose-Einstein condensates by a spatially periodic modulation of the atomic s-wave scattering length[J]. Physical Review A, 2007, 75(1): 013625.
- [23] Mayteevarunyoo T, Malomed B A, Dong G J. Spontaneous symmetry breaking in a nonlinear double-well structure[J]. Physical Review A, 2008, 78(5): 053601.
- [24] Di Carli A, Henderson G, Flannigan S, et al. Collisionally inhomogeneous Bose-Einstein condensates with a linear interaction gradient[J]. Physical Review Letters, 2020, 125(18): 183602.
- [25] Tian Q, Wu L, Zhang J F, et al. Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity[J]. Physical Review E, 2011, 83(1): 016602.
- [26] Wang D S, Hu X H, Hu J P, et al. Quantized quasi-twodimensional Bose-Einstein condensates with spatially modulated nonlinearity[J]. Physical Review A, 2010, 81(2): 025604.
- [27] Wang D S, Hu X H, Liu W M. Localized nonlinear matter waves in two-component Bose-Einstein condensates with timeand space-modulated nonlinearities[J]. Physical Review A, 2010, 82(2): 023612.
- [28] Gligorić G, Maluckov A, Hadžievski L, et al. Discrete localized modes supported by an inhomogeneous defocusing nonlinearity [J]. Physical Review E, 2013, 88(3): 032905.
- [29] Balaž A, Paun R, Nicolin A I, et al. Faraday waves in collisionally inhomogeneous Bose-Einstein condensates[J]. Physical Review A, 2014, 89(2): 023609.
- [30] Sudharsan J B, Radha R, Fabrelli H, et al. Stable multiple vortices in collisionally inhomogeneous attractive Bose-Einstein condensate[J]. Physical Review A, 2015, 92(5): 053601.

Reflection, Localization, Transmission, and Oscillation Behaviors of Solitons in Ultracold Bose Gases with Spatiotemporally Modulated Interactions in an Expulsive Parabolic Potential

He Zhangming, Zhu Qianquan^{*}, Pan Xiang

College of Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China

Abstract

Objective The experimental realizations of collisionally inhomogeneous ultracold Bose gases have not only greatly broadened the research scopes of ultracold atomic physics but also provided an ideal platform to explore novel quantum phenomena. Especially, studies on the peculiar properties and the novel quantum states and their quantum control in collisionally inhomogeneous ultracold Bose gases have been hot topics in the fields of both ultracold atomic physics and quantum information. The bright solitons of ultracold Bose gases have potential applications in quantum information, atomic interferometers, and atom lasers. Gertjerenken *et al.* predicted that the bright-bright solitons could be used to generate Bell states. Helm *et al.* found that the division and fusion of bright solitons in the ultracold Bose gases trapped in the ring well could be used to implement the Sagnac interferometer. Furthermore, in the composite potential composed of harmonic trap potential and Rosen-Morse barrier, the collision of the bright soliton can also be applied to the interferometer. In addition, stable propagation of bright solitons can be used to achieve atomic lasers. The precise control of the bright soliton in ultracold Bose gases is particularly important for the application of ultracold Bose gases.

Experiments have confirmed that the ultracold Bose gases can be controlled by adjusting the external potential and the interaction strength between atoms. With the development of experimental techniques, atomic interactions can be tuned by utilizing Feshbach resonance. In theoretical studies, several forms of time-dependent atomic interactions, such as the exponential function and the periodic function, have been proposed. The changed atomic interaction has an important effect on the properties of bright solitons in the ultracold Bose gases. For example, as atomic interaction increases, the amplitude of the bright soliton in the ultracold Bose gases increases, and its width decreases. When the atomic interaction exceeds a critical value, a transition behavior from oscillation to localization is observed in the ultracold Bose gases.

Methods Firstly, we use the Darboux transformation to obtain the analytical solution of solitons in ultracold Bose gases with the time-dependent atomic interactions. Then, we explore the dynamics of solitons in the ultracold Bose gases with spatiotemporally modulated interactions in an expulsive parabolic potential by Crank-Nicolson method.

Results and Discussions Firstly, we obtain the analytical solution of solitons in ultracold Bose gases by Darboux transformation. It is found that the atomic interaction increasing (decreasing) exponentially with time has a drag (push) effect on solitons in ultracold Bose gases with an expulsive parabolic potential (Fig. 2). Then, the dynamics behavior of bright solitons is explored by Crank-Nicolson method. There is a critical initial speed of solitons in the ultracold Bose gases with unchanged atomic interaction. When the initial speed of solitons is less than the critical value, a reflection behavior of solitons can be observed (Fig. 3). When the initial speed of solitons is equal to the critical value, a localization behavior of solitons can be observed (Fig. 5). In order to investigate the effect of expulsive parabolic potential on this localization behavior of solitons, we calculate localization behaviors of solitons at different trapping frequencies. It is found that the critical initial speed of solitons is collitons increases with the trapping frequency (Fig. 6).

Subsequently, we consider the exponentially time-dependent atomic interactions. When the initial speed of solitons is equal to the critical value, a transition behavior from localization to reflection (transmission) is observed in the ultracold Bose gases with exponentially increasing (decreasing) atomic interactions (Fig. 7). When the initial speed of solitons is less than the critical value, the transition behavior from reflection to transmission is observed in the ultracold Bose gases with exponentially decreasing atomic interactions (Fig. 8). When the initial speed of solitons exceeds the critical value, the transition behavior for transmission to reflection can be found in the ultracold Bose gases with exponentially increasing atomic interactions (Fig. 9).

Finally, we calculate the dynamics behavior of bright solitons in the ultracold Bose gases with spatially modulated interactions in an expulsive parabolic potential. The localization behavior of solitons in the ultracold Bose gases with an expulsive parabolic potential can also be found (Fig. 10). Compared with that in Fig. 6, the critical local speed of the soliton in Fig. 11 decreases. Even if the initial speed is 0, the soliton can also pass through the potential barrier (Fig. 12).

It is mainly attributed to the position-dependent atomic interaction. Meanwhile, a periodic oscillation of solitons with an expulsive potential barrier is newly observed (Fig. 12). The oscillation period of solitons can be controlled by tuning the atomic interaction (Fig. 13) and the trapping frequency of potential (Fig. 14).

Conclusions In this paper, we analyze the reflection, localization, transmission, and oscillation behaviors of solitons in ultracold Bose gases with spatiotemporally modulated interactions in an expulsive parabolic potential, and find that: 1) the atomic interaction increasing (decreasing) exponentially with time has a drag (push) effect on solitons in ultracold Bose gases with an expulsive parabolic potential; 2) there is a critical initial speed of solitons in the ultracold Bose gases with unchanged atomic interaction, and a localization behavior of soliton can be observed at the critical speed; 3) the localization-reflection transitions of solitons are obtained by tuning the atom interactions; 4) a periodic oscillation of solitons with an expulsive potential barrier is newly observed, and the oscillation period of solitons can be controlled by tuning the atomic interaction and the trapping frequency of potential. These results can provide some help for the application of ultracold Bose gases in quantum information.

Key words quantum optics; ultracold Bose gases; bright solitons; atomic interaction